General Description

The SJL40P250 uses advanced trench technology to provide excellent R_{DS(ON)}, low gate charge and operation with gate voltages as low as -4.5V. This device is suitable for use as a wide variety of applications.

Features

- Low Gate Charge
- 100% UIS Tested, 100% DVDS Tested
- High Power and current handing capability
- Lead free product is acquired

Application

- PWM Applications
- Load Switch
- Power Management

Key Performance Parametes

Parameter	Value	Unit
V _{DS}	-40	V
R _{DS(ON)_TYP}	25.6	mΩ
I _D	-8.5	A
Q _G	19.6	nC

Package Marking and Ordering Information

Device/Ordering Code	Marking	Package	Packing	Reel Size	Tape width	Quantity
SJL40P250	SJL40P250	SOT-89-3L	Tape	\	/	5000 Pcs

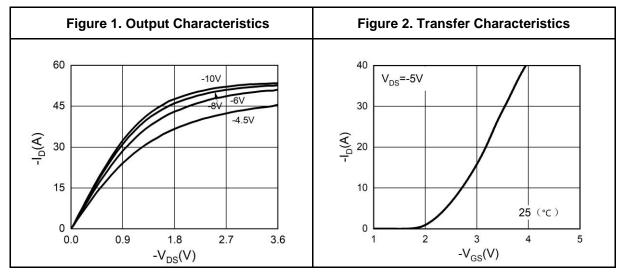
Table 1. Absolute Maximum Ratings (T_A=25℃ unless otherwise noted)

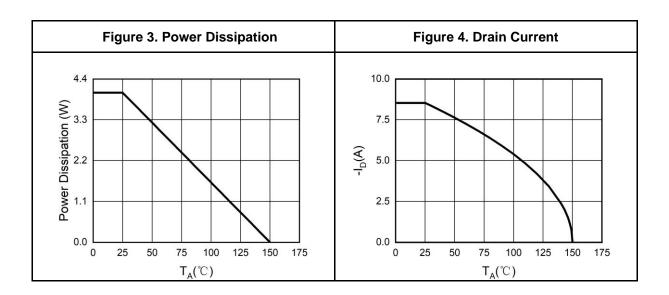
Symbol	Parameter	Limit	Unit
V _{DS}	Drain-Source Voltage (V _{GS} =0V)	-40	V
V _{GS}	Gate-Source Voltage (V _{DS} =0V) ±20		V
1-	Drain Current-Continuous(T _A =25°C)		А
I _D	Drain Current-Continuous(T _A =100℃)	-5.4	А
IDM (pluse)	Drain Current-Continuous@ Current-Pulsed (Note 1)	-34	А
D	Maximum Power Dissipation(T _A =25°C)		W
P _D	Maximum Power Dissipation(T _A =100°C)	1.6	W
Eas	Avalanche energy (Note 2)	49	mJ
TJ, TSTG	Operating Junction and Storage Temperature Range	-55 To 150	C

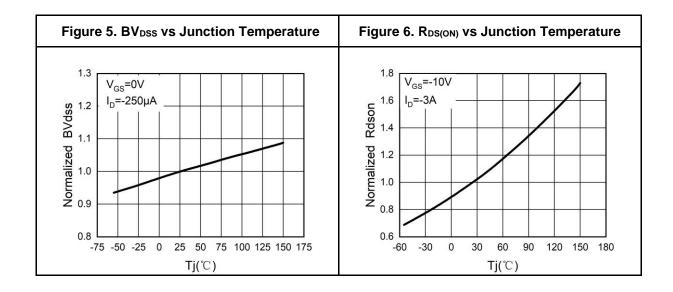
Table 2. Thermal Characteristic

Symbol	Parameter	Тур	Max	Unit
R _{θJA} Thermal Resistance, Junction-to-Ambient			31	°C/W

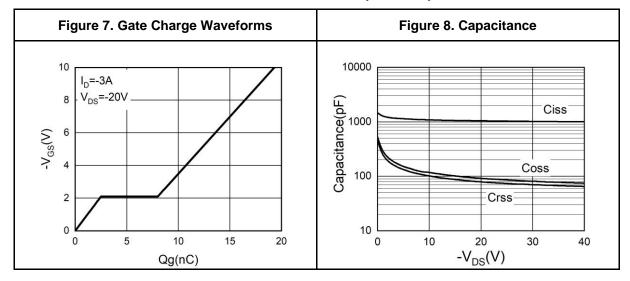
Table 3. Electrical Characteristics ($T_J=25^{\circ}C$ unless otherwise noted)

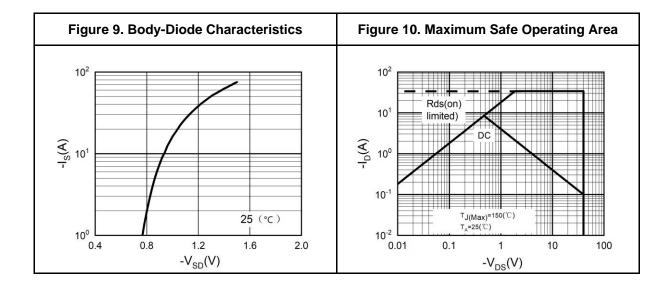

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
On/Off States						
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V I _D =-250μA	-40			V
	7 0 1 1/1 5 1 0 1	V _{DS} =-40V, V _{GS} =0V T _J =25°C			-1	μΑ
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =-40V, V _{GS} =0V T _J =125°C			-100	μA
Igss	Gate-Body Leakage Current	V _{GS} =±20V, V _{DS} =0V			±100	nA
V _{GS(th)}	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =-250μA	-1		-2.5	V
g FS	Forward Transconductance	V _{DS} =-5V, I _D =-3A		9		S
R _{DS(ON)}	Drain-Source On-State Resistance	V _{GS} =-10V, I _D =-3A T _J =25℃		25.6	32	mΩ
R _{DS(ON)}	Drain-Source On-State Resistance	V _{GS} =-4.5V, I _D =-2A T _J =25°C		32.8	43.8	mΩ
Dynamic Charac	cteristics		I.			I.
Ciss	Input Capacitance			1050		pF
Coss	Output Capacitance	V _{DS} =-20V,V _{GS} =0V, f=1.0MHz		92		pF
C _{rss}	Reverse Transfer Capacitance			79		pF
Rg	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1.0MHz		5.9		Ω
Switching Parar	meters		I.			I.
t _{d(on)}	Turn-on Delay Time			13		nS
t _r	Turn-on Rise Time	V _{GS} =-10V, V _{DS} =-20V,		16		nS
$t_{d(off)}$	Turn-Off Delay Time	$R_{L}=6.7\Omega$, $R_{GEN}=3\Omega$		180		nS
t _f	Turn-Off Fall Time			86		nS
Q_g	Total Gate Charge			19.3		nC
Q_{gs}	Gate-Source Charge	V _{GS} =-10V, V _{DS} =-20V, I _D =-3A		2.5		nC
Q_{gd}	Gate-Drain Charge			5.5		nC
Source-Drain Di	iode Characteristics			•		
I _{SD}	Source-Drain Current (Body Diode)				-8.5	Α
V _{SD}	Forward on Voltage (Note 3)	V _{GS} =0V, I _S =-3A			-1.2	V
t _{rr}	Reverse Recovery Time	I _F =-3A, dI/dt=100A/μs		34		ns
Qrr	Reverse Recovery Charge	I _F =-3A, dI/dt=100A/μs		35		nC

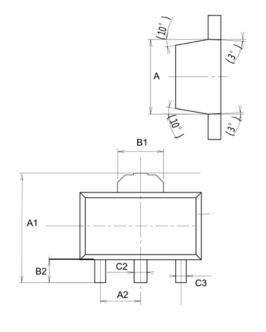

Notes 1.Repetitive Rating: Pulse width limited by maximum junction temperature.

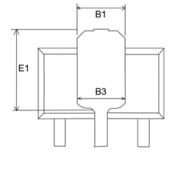

Notes 2.E_{AS} condition: $T_J=25^{\circ}C$, $V_{DD}=40V$, $V_{G}=-10V$, $Rg=25\Omega$, L=0.5mH.

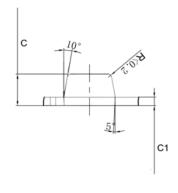
Notes 3.Repetitive Rating: Pulse width limited by maximum junction temperature.

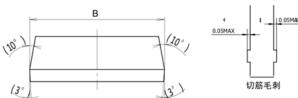

Typical Electrical And Thermal Characteristics (Curves)




Typical Electrical And Thermal Characteristics (Curves)






SOT-89-3L Package Information



COMMON DIMENSIONS CUNITS MEASURE=MILLIMETER					
SYMBOL	MIN	MID	MAX		
A	2.35	2.45	2.55		
A1	4.135	4.235	4.335		
A2	1.45	1.50	1.55		
В	4.40	4.50	4.60		
B1		1.55 REF			
B2	0.95	1.00	1.05		
В3		1.63 REF			
С	1.45	1.50	1.55		
C1	0.39	0.40	0.41		
C2	0.4	0.48	0.55		
C3	0.35	0.4	0.45		
E1	2.65	2.75	2.85		

Attention

This product described in this document can not be used in life support devices or systems, aircraft's control systems, and other applications whose failure can be reasonably expected to result in serious physical and/or material damage, apart from that when an application agreement is signed between customer and Linde Semiconductor.

The performances and characteristics of this product in the independent testing state are displayed in this document. Linde Semiconductor can't guarantee of the performances and characteristics of this described product that mounted in the customer's products or equipments as same as that in the independent testing state. So the customer should evaluate and test devices mounted in the customer's products or equipments.

Linde Semiconductor reserves the right to improve the designs, functions and reliability of this product and modify any and all information described in this document without notice customer, apart from that when an notice agreement is signed between customer and Linde Semiconductor.

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Linde Semiconductor hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.